The potential importance of antihypertensive properties of non-antihypertensive drugs in patients with prehypertension

Marcin Adamczak
Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, Katowice, Poland
The mechanisms of blood pressure control, as well as, pathogenesis of prehypertension and hypertension are complex.

Many drugs which are non-classic antihypertensive drugs might affect different elements of prehypertension and hypertension pathogenesis and may lead to blood pressure reduction.

Antihypertensive properties of non-classic antihypertensive drugs

1. Anti-obesity drugs
2. Drugs used in uric acid lowering therapy
3. Anti-diabetic drugs
4. Calcimimetics
5. Phosphodiesterase type 5 inhibitors
Orlistat reduces lipase activity in duodenum
Orlistat

- 554 obese patients with hypertension were observed during 1 year
- Orlistat 3 x 120 mg vs placebo

↓ body mass by 2.7 kg

↓ SBP by 2.3 mmHg (0.9 mmHg/kg)

↓ DBP by 2.2 mmHg (0.8 mmHg/kg)

Orlistat

- Meta-analysis of 4 randomized, placebo-controlled trials with placebo last over 24 weeks involving 3,112 obese patients with hypertension
- Orlistat 3 x 120 mg
- ↓ body mass by 3.7 kg

↓ SBP by 2.5 mmHg (0.7 mmHg/kg)

↓ DBP by 1.9 mmHg (0.5 mmHg/kg)

Anti-obesity drugs

- **Orlistat** (available in Europe)
 - ↓ body mass by 3.7 kg
 - ↓ SBP by 2.5 mmHg (0.7 mmHg/kg of weight loss)

 Siebenhofer A. et al. Cochrane Database Syst Rev. 2013:CD007654

- **Phentermine and topiramate** (registered in the USA)
 - ↓ body mass by 10.2 kg
 - ↓ SBP by 9.1 mmHg (0.9 mmHg/kg of weight loss)

There are no studies concerning:

- **Locasterine** (serotonin 2C receptor agonist; registered in the USA)
- **Naltrexone/bupropion** (drug used to addiction treatment / antidepressant, available in Europe)
The antihypertensive effect of the low calorie diet and increased physical activity

- Meta-analysis of 25 randomized studies
- 4874 participants

↓ body mass by 5.1 kg
↓ SBP by 4.4 mmHg (0.9 mmHg/kg)
↓ DBP by 3.6 mmHg (0.7 mmHg/kg)

Neter J.E. et al. Hypertension 2003; 42: 878-884
In obese patients with hypertension, the reduction in blood pressure caused by orlistat is mainly associated with weight loss.

\[\downarrow \text{SBP by 2.3 mmHg (0.9 mmHg/kg)} \]

\[\downarrow \text{body mass by 2.7 kg} \]
Antihypertensive properties of non-classic antihypertensive drugs

1. Anti-obesity drugs
2. Drugs used in uric acid lowering therapy
3. Anti-diabetic drugs
4. Calcimimetics
5. Phosphodiesterase type 5 inhibitors
Purine metabolism

ATP + Ryb-5-P \rightarrow PRPP

PRPP synthetase

PRPP

amidoPRT

APRT

APRT

synthesis de novo

ATP - adenosine triphosphate; PRPP - 5-phosphoribosyl-1-pyrophosphate; amidoPRT - amidophosphoryltransferase; PRT - phosphoribosyltransferase; Ade-adenine; Xan-xanthine, Hypoxanthine, Gua-guanine

Xanthine oxidase

ALLOPURINOL

FEBUXOSTAT

URIC ACID

Purine nucleotides

Purine nucleotides
Drugs used in uric acid lowering therapy

- Randomized placebo controlled study with „cross-over” design
- 30 children with untreated hypertension aged 11-17 years and plasma uric acid concentration > 6 mg%
- Allopurinol 2 x 200 mg vs placebo during 4 weeks
- ↓ uricaemia by 2.7 mg/dL

Feig D. et al. JAMA 2008; 300: 924-932
Drugs used in uric acid lowering therapy

↓ 24h - SBP by 6.3 mmHg
(2.3 mmHg/mg/dl)

↓ 24h - DBP by 4.6 mmHg
(1.7 mmHg/mg/dl)

Feig D. et al. JAMA 2008; 300: 924-932
Drugs used in uric acid lowering therapy

- Randomized placebo controlled study
- 60 adolescents with prehypertension and obesity aged 11-17 years with plasma uric acid concentration > 5 mg%
- Allopurinol 200 mg or probenecid 1g vs placebo during 7 weeks
- Allopurinol or probenecid treatment leads to:
 - ↓ uricaemia by 2.5 mg/dL
 - ↓ 24h-SBP by 9.0 mmHg
 - ↓ 24h-DBP by 6.7 mmHg

Soletsky B. et al. Hypertension 2012; 60: 1148-1156
Drugs used in uric acid lowering therapy

- Data analysis from *UK Clinical Practice Research Datalink*
- Patients with hypertension in the age over 65 years
- 378 patients treated with allopurinol vs 378 untreated ones

 Allopurinol treatment leads to: ↓ SBP by 3.0 mmHg
 ↓ DBP by 3.3 mmHg

Beattie C.J. et al. Hypertension 2014; 64: 1102-1107
Drugs used in uric acid lowering therapy

- Meta-analysis of 10 prospective or retrospective clinical trials involving 738 patients with hypertension

Allopurinol: ↓ SBP by **3.3 mmHg** ↓ DBP by **1.3 mmHg**

Drugs used in uric acid lowering therapy

- Meta-analysis of 15 randomized clinical trials

Allopurinol: ↓ SBP and ↓ DBP

Drugs used in uric acid lowering therapy

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Pretreatment a</th>
<th>Placebo</th>
<th>Allopurinol</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart rate, beats/min</td>
<td>72 (67–78)</td>
<td>74 (69–80)</td>
<td>75 (69–80)</td>
<td>.87</td>
</tr>
<tr>
<td>Cardiac output, L/min</td>
<td>6.4 (5.6–7.1)</td>
<td>6.2 (5.4–7.0)</td>
<td>6.6 (5.9–7.2)</td>
<td>.56</td>
</tr>
<tr>
<td>Systemic vascular resistance index, (dyne s/cm5)/m2</td>
<td>2478 (2223–2731)</td>
<td>2473 (2232–2615)</td>
<td>2136 (2056–2228)</td>
<td>.03 b</td>
</tr>
<tr>
<td>Total body water, L</td>
<td>27.8 (26.0–29.7)</td>
<td>28.0 (26.1–30.1)</td>
<td>28.1 (26.0–29.9)</td>
<td>.86</td>
</tr>
<tr>
<td>Plasma renin activity, ng/mL/h</td>
<td>1.9 (1.7–2.2)</td>
<td>2.1 (1.8–2.4)</td>
<td>1.4 (0.8–2.1)</td>
<td>.02 b</td>
</tr>
</tbody>
</table>

Feig D. et al. JAMA 2008; 300: 924-932
Drugs used in uric acid lowering therapy

- Meta-analysis of 10 trials involving 670 patients
- Allopurinol: ↑ flow mediated vasodilatation (FMD)

Antihypertensive properties of non-classic antihypertensive drugs

1. Anti-obesity drugs
2. Drugs used in uric acid lowering therapy
3. Anti-diabetic drugs
 - Metformin
 - SGLT2 inhibitors (sodium-glucose cotransporter-2 inhibitors)
 - GLP-1 receptor agonists (glucagon-like peptide-1)
4. Calcimimetics
5. Phosphodiesterase type 5 inhibitors
Metformin reduces the gluconeogenesis in the liver and increases the insulin sensitivity in the skeletal muscles.
Metformin

- Meta-analysis of 28 randomized clinical trials involving 4113 non-diabetic subjects
- Metformin leads to ↓ SBP by 2.0 mmHg
- Metformin does not affect DBP
- In obese patients metformin causes ↓ SBP by 3.0 mmHg
- In patients with impaired glucose tolerance metformin causes ↓ SBP by 5.0 mmHg

Metformin

• Causes of antihypertensive effect:
 - weight loss
 - ↓ insulin resistance and ↓ insulinaemia (leading to sympathetic nervous system activity decrease and natriuresis increase)

Antihypertensive properties of non-classic antihypertensive drugs

1. Anti-obesity drugs
2. Drugs used in uric acid lowering therapy
3. Anti-diabetic drugs
 • Metformin
 • SGLTP-2 inhibitors (sodium-glucose cotransporter-2 inhibitors)
 • GLP-1 receptor agonists (glucagon-like peptide-1)
4. Calcimimetics
5. Phosphodiesterase type 5 inhibitors
SGLTP 2 inhibitors (sodium-glucose cotransporter-2 inhibitors)

Filtered glucose > 180 g/d

↓ sodium-glucose cotransporter – 2 activity

- Canagliflozin
- Dapagliflozin
- Empagliflozin

Elimination of 80 g/d glucose in urine (loss of about 200 kcal/d)

Figure provided by Prof. Andrzej Więcek
SGLT2 inhibitors (sodium-glucose cotransporter-2 inhibitors)
Empagliflozin - EMPA-REG OUTCOME

↓ SBP by 4.2 mmHg

↓ DBP by 1.8 mmHg

SGLT2 inhibitors
(sodium-glucose cotransporter-2 inhibitors)
Canagliflozin - CANVAS

↓ SBP by 3.9 mmHg

↓ DBP by 1.4 mmHg

SGLT2 inhibitors
(sodium-glucose cotransporter-2 inhibitors)

• Meta-analysis of 27 randomized clinical trials involving 12960 patients (9 studies with canagliflozin, 12 studies with dapagliflozin, 3 studies with empagliflozin)

• SGLT2 inhibitors leads to: ↓ SBP by 4.0 mmHg
 ↓ DBP by 1.6 mmHg

SGLTP 2 inhibitors
(sodium-glucose cotransporter-2 inhibitors)

• Meta-analysis of 6 randomized clinical trials with the ABPM use involving 2098 patients (1 study with canagliflozin, 3 studies with dapagliflozin, 1 study with empagliflozin, 1 study with ertagliflozin)

• SGLTP 2 inhibitors leads to: ↓ SBP by 3.8 mmHg
 ↓ DBP by 1.8 mmHg

SGLTP 2 inhibitors
(sodium-glucose cotransporter-2 inhibitors)

Causes of antihypertensive effect:

• ↓ weight loss
• ↓ uricaemia
• ↑ natriuresis

SGLT2 inhibitors (sodium-glucose cotransporter-2 inhibitors) EMPA-REG OUTCOME

↓ body mass by ~ 2 kg

SGLTP 2 inhibitors (sodium-glucose cotransporter-2 inhibitors)

Causes of antihypertensive effect:
• ↓ weight loss
• ↓ uricaemia
• ↑ natriuresis

SGLTP 2 inhibitors
(sodium-glucose cotransporter-2 inhibitors)
EMPA-REG OUTCOME

↓ uricaemia by ~ 0.4 mg %

SGLTP 2 inhibitors
(sodium-glucose cotransporter-2 inhibitors)

Causes of antihypertensive effect:

• \downarrow weight loss
• \downarrow uricaemia
• \uparrow natriuresis

SGLTP 2 inhibitors (sodium-glucose cotransporter-2 inhibitors)

SGLTP 2 inhibitors
(sodium-glucose cotransporter-2 inhibitors)

• Randomized placebo controlled study with „cross-over” design
• 59 diabetes mellitus type 2 patients
• 10 mg dapagliflozine vs placebo during 6 weeks
• It leads to:
 ↓ SBP by 3.0 mmHg
 ↓ DBP by 1.6 mmHg

Skin Na-MRI

Antihypertensive properties of non-classic antihypertensive drugs

1. Anti-obesity drugs

2. Drugs used in uric acid lowering therapy

3. Anti-diabetic drugs
 • Metformin
 • SGLT-2 inhibitors (sodium-glucose cotransporter-2 inhibitors)
 • GLP-1 receptor agonists (glucagon-like peptide-1)

4. Calcimimetics

5. Phosphodiesterase type 5 inhibitors
GLP-1 receptor agonists (glucagon-like peptide-1)

- Exenatide
- Liraglutide

Activation of the GLP-1 receptor by exogenous agonists

Diagram showing the effects of GLP-1 and GIP on insulin and glucagon production, as well as the role of DPP-4 in cleaving intact GLP-1 and GIP.
GLP-1 receptor agonists (glucagon-like peptide-1)

- Meta-analysis of 31 randomized placebo-controlled studies involving 4807 patients with diabetes type 2 treated with GLP-1 receptor agonists (exenatide or liraglutide)
- GLP-1 receptor agonists leads to: ↓ SBP by 1.8 mmHg
 ↓ DBP by 0.5 mmHg
- The antihypertensive effect of GLP-1 receptor agonists is observed after 2-3 weeks of treatment

GLP-1 receptor agonists (glucagon-like peptide-1)

• Causes of antihypertensive effect:
 - vascular relaxation (GLP-1 receptor activation in endothelial cells enhances NO production)
 - weight loss
Antihypertensive properties of non-classic antihypertensive drugs

1. Anti-obesity drugs
2. Drugs used in uric acid lowering therapy
3. Anti-diabetic drugs
4. Calcimimetics
5. Phosphodiesterase type 5 inhibitors
Calcimimetics
Cinacalcet

• Calcimimetics increase calcium receptor sensitivity to calcium through its allosteric modulation
• Calcimimetics reduces serum PTH concentration
• Calcimimetics are used in the treatment of secondary hyperparathyroidism in patients with chronic kidney disease treated with haemodialysis

Calcimimetics
Cinacalcet

- 58 hemodialysis patients with CKD and secondary hyperparathyroidism
- Cinacalcet used during 6 months; mean dose: 51 mg
- Reduction of serum PTH concentration from 1138 to 772 pg/ml

Calcimimetics
Cinacalcet
EVOLVE study

Calcimimetics
Cinacalcet

Causes of antihypertensive cinacalcet effect:
• stimulation of calcium receptors in vascular endothelial cells enhancing the production of nitric oxide
• serum PTH concentration reduction

PTH has hypertensinogenic properties

- 6545 participants of *Multi-Ethnic Study of Atherosclerosis* study

<table>
<thead>
<tr>
<th>Serum PTH Category (pg/ml)</th>
<th>Hypertension</th>
<th>Systolic blood pressure, mmHg</th>
<th>Diastolic blood pressure, mmHg</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 32.8</td>
<td>688 (36%)</td>
<td>121.9 ±20.3</td>
<td>70.4 ±9.8</td>
</tr>
<tr>
<td>32.9 – 44.2</td>
<td>783 (41%)</td>
<td>124.8 ±20.6</td>
<td>71.4 ±10.1</td>
</tr>
<tr>
<td>44.3 – 65</td>
<td>953 (50%)</td>
<td>129.1 ±21.4</td>
<td>72.7 ±10.2</td>
</tr>
<tr>
<td>>65</td>
<td>478 (62%)</td>
<td>135 ±23.4</td>
<td>74.2 ±11.4</td>
</tr>
</tbody>
</table>

PTH has hypertensinogenic properties

- Intravenous infusion of PTH leads to blood pressure increase

- In rats with normal blood pressure (WKY) and in hypertensive rats (SHR) after parathyroidectomy, decrease of blood pressure is observed

- In patients with hypertension and primary hyperparathyroidism after parathyroidectomy, decrease of blood pressure is found
 Heyliger A. et al. Surgery 2009; 146: 1042–1047

- In hemodialysis patients with CKD and secondary hyperparathyroidism after parathyroidectomy, decrease of blood pressure is observed
Antihypertensive properties of non-classic antihypertensive drugs

1. Anti-obesity drugs
2. Drugs used in uric acid lowering therapy
3. Anti-diabetic drugs
4. Calcimimetics
5. Phosphodiesterase type 5 inhibitors
Phosphodiesterase type 5 inhibitors inhibit cGMP breakdown in smooth muscle cells. Increasing cGMP cytoplasmatic concentration in smooth muscle cells leads to vascular relaxation.

- Sildenafil
- Vardenafil
- Tadalafil
Phosphodiesterase type 5 inhibitors

- Randomized placebo-controlled study with "cross-over" design
- 22 patients with hypertension without pharmacological treatment
- Sildenafil 50 mg vs placebo
- 1 hour after sildenafil dose:
 - ↓ SBP by 9 mmHg
 - ↓ DBP by 6 mmHg

Phosphodiesterase type 5 inhibitors

• Randomized placebo-controlled study, with "cross-over" design
• 6 patients with resistant hypertension
• Sildenafil 50 mg vs placebo
• 1 hour after sildenafil dose:

 ▼ SBP by 10 mmHg
 ▼ DBP by 8 mmHg

Phosphodiesterase type 5 inhibitors

• Randomized placebo-controlled study, with "cross-over" design
• 22 participants with hypertension without pharmacological treatment
• Sildenafil 3 x 50 mg daily vs placebo
• After 16 days of sildenafil treatment:
 \[
 \downarrow \text{SBP by 9 mmHg} \\
 \downarrow \text{DBP by 7 mmHg}
 \]

Antihypertensive properties of non-classic antihypertensive drugs

Drugs that are not discussed during this lecture due to inconclusive data concerning their antihypertensive effect:

- statins
- bromocriptine
- dipeptidyl peptidase Inhibitors - 4 (DPP-4)
- vitamin D
Clinical relevance of antihypertensive properties of non-hypertensive drugs

<table>
<thead>
<tr>
<th>Drug</th>
<th>Effect on SBP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sildenafil</td>
<td>↓ SBP by 9.0 mmHg</td>
</tr>
<tr>
<td>Allopurinol</td>
<td>↓ SBP by 6.0 mmHg</td>
</tr>
<tr>
<td>SGLTP-2 inhibitors</td>
<td>↓ SBP by 4.0 mmHg</td>
</tr>
<tr>
<td>Orlistat</td>
<td>↓ SBP by 2.5 mmHg</td>
</tr>
<tr>
<td>Cinacalcet</td>
<td>↓ SBP by 2.2 mmHg</td>
</tr>
<tr>
<td>Metformin</td>
<td>↓ SBP by 2.0 mmHg</td>
</tr>
<tr>
<td>GLP-1 receptor agonists</td>
<td>↓ SBP by 2.0 mmHg</td>
</tr>
</tbody>
</table>
Clinical relevance of antihypertensive properties of non-hypertensive drugs

- Patient with diabetes type 2 and hyperuricaemia treated with: *metformin, empagliflozin* and *allopurinol*
 ↓ SBP by 12 mmHg
- Patient with hiperuricaemia and erectile dysfuntion treated with: *allopurinol* and *sildenafil*
 ↓ SBP by 15 mmHg
- Patient with diabetes type 2 and erectile dysfunction treated with: *metformin, empagliflozin* and *sildenafil*
 ↓ SBP by 15 mmHg
Clinical relevance of antihypertensive properties of non-hypertensive drugs

- Sildenafil, allopurinol, SGLT-P-2 inhibitors
 ↓ SBP by 4.0-9.0 mmHg

- Orlistat, cinacalcet, metformin, GLP-1 receptor agonists
 ↓ SBP by 2.0-2.5 mmHg

- Meta-analysis of prospective observational studies involving one million adults:
 ↓ SBP by 3-4 mmHg leads to:
 ↓ by 20% the risk of death due to stroke
 ↓ by 12% the risk of death due to ischemic heart disease

Conclusions

1. Many drugs which are non-classic antihypertensive drugs may reduce blood pressure

2. In some patients with prehypertension, the antihypertensive properties of non-hypotensive drugs might be of clinical relevance. This issue needs further clinical studies.
Thank you for your attention